投稿指南
来稿应自觉遵守国家有关著作权法律法规,不得侵犯他人版权或其他权利,如果出现问题作者文责自负,而且本刊将依法追究侵权行为给本刊造成的损失责任。本刊对录用稿有修改、删节权。经本刊通知进行修改的稿件或被采用的稿件,作者必须保证本刊的独立发表权。 一、投稿方式: 1、 请从 我刊官网 直接投稿 。 2、 请 从我编辑部编辑的推广链接进入我刊投审稿系统进行投稿。 二、稿件著作权: 1、 投稿人保证其向我刊所投之作品是其本人或与他人合作创作之成果,或对所投作品拥有合法的著作权,无第三人对其作品提出可成立之权利主张。 2、 投稿人保证向我刊所投之稿件,尚未在任何媒体上发表。 3、 投稿人保证其作品不含有违反宪法、法律及损害社会公共利益之内容。 4、 投稿人向我刊所投之作品不得同时向第三方投送,即不允许一稿多投。 5、 投稿人授予我刊享有作品专有使用权的方式包括但不限于:通过网络向公众传播、复制、摘编、表演、播放、展览、发行、摄制电影、电视、录像制品、录制录音制品、制作数字化制品、改编、翻译、注释、编辑,以及出版、许可其他媒体、网站及单位转载、摘编、播放、录制、翻译、注释、编辑、改编、摄制。 6、 第5条所述之网络是指通过我刊官网。 7、 投稿人委托我刊声明,未经我方许可,任何网站、媒体、组织不得转载、摘编其作品。

计算机软件及计算机应用论文_基于无监督域自

来源:科学与社会 【在线投稿】 栏目:期刊导读 时间:2021-09-04 08:32
作者:网站采编
关键词:
摘要:文章摘要:作为工业互联网的典型实例之一,车联网技术近年来飞速发展,其核心在于信息的互联互通.因此,精准、可迁移的环境信息感知能力是其稳定运行的前提之一.深度学习的进步推动

文章摘要:作为工业互联网的典型实例之一,车联网技术近年来飞速发展,其核心在于信息的互联互通.因此,精准、可迁移的环境信息感知能力是其稳定运行的前提之一.深度学习的进步推动了计算机视觉任务的发展,但基于传统深度学习的方法仍存在训练过程对人工标注数据依赖强、场景泛化能力较差的弊端.而对于计算机视觉任务来说,训练数据的真值标签获取较难,因此如何提升模型的迁移能力,缓解训练对人工标注的依赖受到了学界的广泛关注.无监督域自适应方法使用深度学习模型进行特征提取和对齐,使得深度学习模型在不同域间迁移时仍能保证良好的性能,在计算机视觉任务中发挥了重要作用.因此,本综述主要聚焦无监督域自适应方法在一些典型计算机视觉任务中的挑战和应用.首先,介绍了基于深度学习的无监督域自适应方法的定义、重要意义、应用难点、基本方法和相关数据集.然后,分别针对典型计算机视觉任务介绍了无监督域自适应方法在其中的应用.最后,进行了总结和展望.

文章关键词:无监督域自适应,计算机视觉,深度学习,迁移学习,自主系统,

项目基金:国家自然科学基金基础科学中心项目(批准号:61988101),国家杰出青年科学基金(批准号:61725301),高等学校学科创新引智计划(编号:B17017),中央高校基本科研业务费专项资金(编号:222202117006)资助,《科学与社会》 网址: http://www.kxysh.cn/qikandaodu/2021/0904/1189.html



上一篇: 马克思主义论文_历史辩证法视域下科学社会主
下一篇: 出版论文_谈学术专著出版优势学科的构建与发

科学与社会投稿 | 科学与社会编辑部| 科学与社会版面费 | 科学与社会论文发表 | 科学与社会最新目录
Copyright © 2019 《科学与社会》杂志社 版权所有
投稿电话: 投稿邮箱: